Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Diagnostics (Basel) ; 13(10)2023 May 18.
Article in English | MEDLINE | ID: covidwho-20237170

ABSTRACT

The early diagnosis of infectious diseases is demanded by digital healthcare systems. Currently, the detection of the new coronavirus disease (COVID-19) is a major clinical requirement. For COVID-19 detection, deep learning models are used in various studies, but the robustness is still compromised. In recent years, deep learning models have increased in popularity in almost every area, particularly in medical image processing and analysis. The visualization of the human body's internal structure is critical in medical analysis; many imaging techniques are in use to perform this job. A computerized tomography (CT) scan is one of them, and it has been generally used for the non-invasive observation of the human body. The development of an automatic segmentation method for lung CT scans showing COVID-19 can save experts time and can reduce human error. In this article, the CRV-NET is proposed for the robust detection of COVID-19 in lung CT scan images. A public dataset (SARS-CoV-2 CT Scan dataset), is used for the experimental work and customized according to the scenario of the proposed model. The proposed modified deep-learning-based U-Net model is trained on a custom dataset with 221 training images and their ground truth, which was labeled by an expert. The proposed model is tested on 100 test images, and the results show that the model segments COVID-19 with a satisfactory level of accuracy. Moreover, the comparison of the proposed CRV-NET with different state-of-the-art convolutional neural network models (CNNs), including the U-Net Model, shows better results in terms of accuracy (96.67%) and robustness (low epoch value in detection and the smallest training data size).

2.
Diagnostics (Basel) ; 13(10)2023 May 17.
Article in English | MEDLINE | ID: covidwho-20232008

ABSTRACT

Predicting length of stay (LoS) and understanding its underlying factors is essential to minimizing the risk of hospital-acquired conditions, improving financial, operational, and clinical outcomes, and better managing future pandemics. The purpose of this study was to forecast patients' LoS using a deep learning model and to analyze cohorts of risk factors reducing or prolonging LoS. We employed various preprocessing techniques, SMOTE-N to balance data, and a TabTransformer model to forecast LoS. Finally, the Apriori algorithm was applied to analyze cohorts of risk factors influencing hospital LoS. The TabTransformer outperformed the base machine learning models in terms of F1 score (0.92), precision (0.83), recall (0.93), and accuracy (0.73) for the discharged dataset and F1 score (0.84), precision (0.75), recall (0.98), and accuracy (0.77) for the deceased dataset. The association mining algorithm was able to identify significant risk factors/indicators belonging to laboratory, X-ray, and clinical data, such as elevated LDH and D-dimer levels, lymphocyte count, and comorbidities such as hypertension and diabetes. It also reveals what treatments have reduced the symptoms of COVID-19 patients, leading to a reduction in LoS, particularly when no vaccines or medication, such as Paxlovid, were available.

3.
Diagnostics (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2290713

ABSTRACT

The COVID-19 pandemic has presented a unique challenge for physicians worldwide, as they grapple with limited data and uncertainty in diagnosing and predicting disease outcomes. In such dire circumstances, the need for innovative methods that can aid in making informed decisions with limited data is more critical than ever before. To allow prediction with limited COVID-19 data as a case study, we present a complete framework for progression and prognosis prediction in chest X-rays (CXR) through reasoning in a COVID-specific deep feature space. The proposed approach relies on a pre-trained deep learning model that has been fine-tuned specifically for COVID-19 CXRs to identify infection-sensitive features from chest radiographs. Using a neuronal attention-based mechanism, the proposed method determines dominant neural activations that lead to a feature subspace where neurons are more sensitive to COVID-related abnormalities. This process allows the input CXRs to be projected into a high-dimensional feature space where age and clinical attributes like comorbidities are associated with each CXR. The proposed method can accurately retrieve relevant cases from electronic health records (EHRs) using visual similarity, age group, and comorbidity similarities. These cases are then analyzed to gather evidence for reasoning, including diagnosis and treatment. By using a two-stage reasoning process based on the Dempster-Shafer theory of evidence, the proposed method can accurately predict the severity, progression, and prognosis of a COVID-19 patient when sufficient evidence is available. Experimental results on two large datasets show that the proposed method achieves 88% precision, 79% recall, and 83.7% F-score on the test sets.

4.
Front Med (Lausanne) ; 9: 1005920, 2022.
Article in English | MEDLINE | ID: covidwho-2142057

ABSTRACT

In the last 2 years, we have witnessed multiple waves of coronavirus that affected millions of people around the globe. The proper cure for COVID-19 has not been diagnosed as vaccinated people also got infected with this disease. Precise and timely detection of COVID-19 can save human lives and protect them from complicated treatment procedures. Researchers have employed several medical imaging modalities like CT-Scan and X-ray for COVID-19 detection, however, little concentration is invested in the ECG imaging analysis. ECGs are quickly available image modality in comparison to CT-Scan and X-ray, therefore, we use them for diagnosing COVID-19. Efficient and effective detection of COVID-19 from the ECG signal is a complex and time-taking task, as researchers usually convert them into numeric values before applying any method which ultimately increases the computational burden. In this work, we tried to overcome these challenges by directly employing the ECG images in a deep-learning (DL)-based approach. More specifically, we introduce an Efficient-ECGNet method that presents an improved version of the EfficientNetV2-B4 model with additional dense layers and is capable of accurately classifying the ECG images into healthy, COVID-19, myocardial infarction (MI), abnormal heartbeats (AHB), and patients with Previous History of Myocardial Infarction (PMI) classes. Moreover, we introduce a module to measure the similarity of COVID-19-affected ECG images with the rest of the diseases. To the best of our knowledge, this is the first effort to approximate the correlation of COVID-19 patients with those having any previous or current history of cardio or respiratory disease. Further, we generate the heatmaps to demonstrate the accurate key-points computation ability of our method. We have performed extensive experimentation on a publicly available dataset to show the robustness of the proposed approach and confirmed that the Efficient-ECGNet framework is reliable to classify the ECG-based COVID-19 samples.

5.
Mathematics ; 10(22):4267, 2022.
Article in English | MDPI | ID: covidwho-2116237

ABSTRACT

The new COVID-19 variants of concern are causing more infections and spreading much faster than their predecessors. Recent cases show that even vaccinated people are highly affected by these new variants. The proactive nucleotide sequence prediction of possible new variants of COVID-19 and developing better healthcare plans to address their spread require a unified framework for variant classification and early prediction. This paper attempts to answer the following research questions: can a convolutional neural network with self-attention by extracting discriminative features from nucleotide sequences be used to classify COVID-19 variants? Second, is it possible to employ uncertainty calculation in the predicted probability distribution to predict new variants? Finally, can synthetic approaches such as variational autoencoder-decoder networks be employed to generate a synthetic new variant from random noise? Experimental results show that the generated sequence is significantly similar to the original coronavirus and its variants, proving that our neural network can learn the mutation patterns from the old variants. Moreover, to our knowledge, we are the first to collect data for all COVID-19 variants for computational analysis. The proposed framework is extensively evaluated for classification, new variant prediction, and new variant generation tasks and achieves better performance for all tasks. Our code, data, and trained models are available on GitHub (https://github.com/Aminullah6264/COVID19, accessed on 16 September 2022).

6.
Mathematics ; 10(22):4165, 2022.
Article in English | MDPI | ID: covidwho-2110173

ABSTRACT

The deadly threat caused by the rapid spread of COVID-19 has been restricted by virtue of vaccines. However, there is misinformation regarding the certainty and positives outcome of getting vaccinated;hence, many people are reluctant to opt for it. Therefore, in this paper, we identified public sentiments and hesitancy toward the COVID-19 vaccines based on Instagram posts as part of intelligent surveillance. We first retrieved more than 10k publicly available comments and captions posted under different vaccine hashtags (namely, covaxin, covishield, and sputnik). Next, we translated the extracted comments into a common language (English), followed by the calculation of the polarity score of each comment, which helped identify the vaccine sentiments and opinions in the comments (positive, negative, and neutral) with an accuracy of more than 80%. Moreover, upon analysing the sentiments, we found that covaxin received 71.4% positive, 18.5% neutral, and 10.1% negative comments;covishield obtained 64.2% positive, 24.5% neutral, and 11.3% negative post;and sputnik received 55.8% positive, 15.5% neutral, and 28.7% negative sentiments. Understanding vaccination perceptions and views through Instagram comments, captions, and posts is helpful for public health officials seeking to enhance vaccine uptake by promoting positive marketing and reducing negative marketing. In addition to this, some interesting future directions are also suggested considering the investigated problem.

7.
Diagnostics (Basel) ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2109977

ABSTRACT

The outbreak of the novel coronavirus disease COVID-19 (SARS-CoV-2) has developed into a global epidemic. Due to the pathogenic virus's high transmission rate, accurate identification and early prediction are required for subsequent therapy. Moreover, the virus's polymorphic nature allows it to evolve and adapt to various environments, making prediction difficult. However, other diseases, such as dengue, MERS-CoV, Ebola, SARS-CoV-1, and influenza, necessitate the employment of a predictor based on their genomic information. To alleviate the situation, we propose a deep learning-based mechanism for the classification of various SARS-CoV-2 virus variants, including the most recent, Omicron. Our model uses a neural network with a temporal convolution neural network to accurately identify different variants of COVID-19. The proposed model first encodes the sequences in the numerical descriptor, and then the convolution operation is applied for discriminative feature extraction from the encoded sequences. The sequential relations between the features are collected using a temporal convolution network to classify COVID-19 variants accurately. We collected recent data from the NCBI, on which the proposed method outperforms various baselines with a high margin.

8.
Applied Sciences ; 12(21):11059, 2022.
Article in English | MDPI | ID: covidwho-2099303

ABSTRACT

An anomaly indicates something unusual, related to detecting a sudden behavior change, and is also helpful in detecting irregular and malicious behavior. Anomaly detection identifies unusual events, suspicious objects, or observations that differ significantly from normal behavior or patterns. Discrepancies in data can be observed in different ways, such as outliers, standard deviation, and noise. Anomaly detection helps us understand the emergence of specific diseases based on health-related tweets. This paper aims to analyze tweets to detect the unusual emergence of healthcare-related tweets, especially pre-COVID-19 and during COVID-19. After pre-processing, this work collected more than 44 thousand tweets and performed topic modeling. Non-negative matrix factorization (NMF) and latent Dirichlet allocation (LDA) were deployed for topic modeling, and a query set was designed based on resultant topics. This query set was used for anomaly detection using a sentence transformer. K-means was also employed for clustering outlier tweets from the cleaned tweets based on similarity. Finally, an unusual cluster was selected to identify pandemic-like healthcare emergencies. Experimental results show that the proposed framework can detect a sudden rise of unusual tweets unrelated to regular tweets. The new framework was employed in two case studies for anomaly detection and performed with 78.57% and 70.19% accuracy.

9.
Sci Rep ; 12(1): 8922, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1864771

ABSTRACT

The outbreak of COVID-19, since its appearance, has affected about 200 countries and endangered millions of lives. COVID-19 is extremely contagious disease, and it can quickly incapacitate the healthcare systems if infected cases are not handled timely. Several Conventional Neural Networks (CNN) based techniques have been developed to diagnose the COVID-19. These techniques require a large, labelled dataset to train the algorithm fully, but there are not too many labelled datasets. To mitigate this problem and facilitate the diagnosis of COVID-19, we developed a self-attention transformer-based approach having self-attention mechanism using CT slices. The architecture of transformer can exploit the ample unlabelled datasets using pre-training. The paper aims to compare the performances of self-attention transformer-based approach with CNN and Ensemble classifiers for diagnosis of COVID-19 using binary Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and multi-class Hybrid-learning for UnbiaSed predicTion of COVID-19 (HUST-19) CT scan dataset. To perform this comparison, we have tested Deep learning-based classifiers and ensemble classifiers with proposed approach using CT scan images. Proposed approach is more effective in detection of COVID-19 with an accuracy of 99.7% on multi-class HUST-19, whereas 98% on binary class SARS-CoV-2 dataset. Cross corpus evaluation achieves accuracy of 93% by training the model with Hust19 dataset and testing using Brazilian COVID dataset.


Subject(s)
COVID-19 , Algorithms , COVID-19/diagnosis , Humans , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , SARS-CoV-2
10.
Life (Basel) ; 12(5)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1810008

ABSTRACT

Currently, the spread of COVID-19 is running at a constant pace. The current situation is not so alarming, but every pandemic has a history of three waves. Two waves have been seen, and now expecting the third wave. Compartmental models are one of the methods that predict the severity of a pandemic. An enhanced SEIR model is expected to predict the new cases of COVID-19. The proposed model has an additional compartment of vaccination. This proposed model is the SEIRV model that predicts the severity of COVID-19 when the population is vaccinated. The proposed model is simulated with three conditions. The first condition is when social distancing is not incorporated, while the second condition is when social distancing is included. The third one condition is when social distancing is combined when the population is vaccinated. The result shows an epidemic growth rate of about 0.06 per day, and the number of infected people doubles every 10.7 days. Still, with imparting social distancing, the proposed model obtained the value of R0 is 1.3. Vaccination of infants and kids will be considered as future work.

11.
Healthcare (Basel) ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: covidwho-1792739

ABSTRACT

There have been considerable losses in terms of human and economic resources due to the current coronavirus pandemic. This work, which contributes to the prevention and control of COVID-19, proposes a novel modified epidemiological model that predicts the epidemic's evolution over time in India. A mathematical model was proposed to analyze the spread of COVID-19 in India during the lockdowns implemented by the government of India during the first and second waves. What makes this study unique, however, is that it develops a conceptual model with time-dependent characteristics, which is peculiar to India's diverse and homogeneous societies. The results demonstrate that governmental control policies and suitable public perception of risk in terms of social distancing and public health safety measures are required to control the spread of COVID-19 in India. The results also show that India's two strict consecutive lockdowns (21 days and 19 days, respectively) successfully helped delay the spread of the disease, buying time to pump up healthcare capacities and management skills during the first wave of COVID-19 in India. In addition, the second wave's severe lockdown put a lot of pressure on the sustainability of many Indian cities. Therefore, the data show that timely implementation of government control laws combined with a high risk perception among the Indian population will help to ensure sustainability. The proposed model is an effective strategy for constructing healthy cities and sustainable societies in India, which will help prevent such a crisis in the future.

12.
Sensors ; 22(7):2638, 2022.
Article in English | MDPI | ID: covidwho-1762392

ABSTRACT

The use of face masks has increased dramatically since the COVID-19 pandemic started in order to to curb the spread of the disease. Additionally, breakthrough infections caused by the Delta and Omicron variants have further increased the importance of wearing a face mask, even for vaccinated individuals. However, the use of face masks also induces attenuation in speech signals, and this change may impact speech processing technologies, e.g., automated speaker verification (ASV) and speech to text conversion. In this paper we examine Automatic Speaker Verification (ASV) systems against the speech samples in the presence of three different types of face mask: surgical, cloth, and filtered N95, and analyze the impact on acoustics and other factors. In addition, we explore the effect of different microphones, and distance from the microphone, and the impact of face masks when speakers use ASV systems in real-world scenarios. Our analysis shows a significant deterioration in performance when an ASV system encounters different face masks, microphones, and variable distance between the subject and microphone. To address this problem, this paper proposes a novel framework to overcome performance degradation in these scenarios by realigning the ASV system. The novelty of the proposed ASV framework is as follows: first, we propose a fused feature descriptor by concatenating the novel Ternary Deviated overlapping Patterns (TDoP), Mel Frequency Cepstral Coefficients (MFCC), and Gammatone Cepstral Coefficients (GTCC), which are used by both the ensemble learning-based ASV and anomaly detection system in the proposed ASV architecture. Second, this paper proposes an anomaly detection model for identifying vocal samples produced in the presence of face masks. Next, it presents a Peak Norm (PN) filter to approximate the signal of the speaker without a face mask in order to boost the accuracy of ASV systems. Finally, the features of filtered samples utilizing the PN filter and samples without face masks are passed to the proposed ASV to test for improved accuracy. The proposed ASV system achieved an accuracy of 0.99 and 0.92, respectively, on samples recorded without a face mask and with different face masks. Although the use of face masks affects the ASV system, the PN filtering solution overcomes this deficiency up to 4%. Similarly, when exposed to different microphones and distances, the PN approach enhanced system accuracy by up to 7% and 9%, respectively. The results demonstrate the effectiveness of the presented framework against an in-house prepared, diverse Multi Speaker Face Masks (MSFM) dataset, (IRB No. FY2021-83), consisting of samples of subjects taken with a variety of face masks and microphones, and from different distances.

13.
Microsc Res Tech ; 85(6): 2313-2330, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1703067

ABSTRACT

The COVID-19 pandemic is spreading at a fast pace around the world and has a high mortality rate. Since there is no proper treatment of COVID-19 and its multiple variants, for example, Alpha, Beta, Gamma, and Delta, being more infectious in nature are affecting millions of people, further complicates the detection process, so, victims are at the risk of death. However, timely and accurate diagnosis of this deadly virus can not only save the patients from life loss but can also prevent them from the complex treatment procedures. Accurate segmentation and classification of COVID-19 is a tedious job due to the extensive variations in its shape and similarity with other diseases like Pneumonia. Furthermore, the existing techniques have hardly focused on the infection growth estimation over time which can assist the doctors to better analyze the condition of COVID-19-affected patients. In this work, we tried to overcome the shortcomings of existing studies by proposing a model capable of segmenting, classifying the COVID-19 from computed tomography images, and predicting its behavior over a certain period. The framework comprises four main steps: (i) data preparation, (ii) segmentation, (iii) infection growth estimation, and (iv) classification. After performing the pre-processing step, we introduced the DenseNet-77 based UNET approach. Initially, the DenseNet-77 is used at the Encoder module of the UNET model to calculate the deep keypoints which are later segmented to show the coronavirus region. Then, the infection growth estimation of COVID-19 per patient is estimated using the blob analysis. Finally, we employed the DenseNet-77 framework as an end-to-end network to classify the input images into three classes namely healthy, COVID-19-affected, and pneumonia images. We evaluated the proposed model over the COVID-19-20 and COVIDx CT-2A datasets for segmentation and classification tasks, respectively. Furthermore, unlike existing techniques, we performed a cross-dataset evaluation to show the generalization ability of our method. The quantitative and qualitative evaluation confirms that our method is robust to both COVID-19 segmentation and classification and can accurately predict the infection growth in a certain time frame. RESEARCH HIGHLIGHTS: We present an improved UNET framework with a DenseNet-77-based encoder for deep keypoints extraction to enhance the identification and segmentation performance of the coronavirus while reducing the computational complexity as well. We propose a computationally robust approach for COVID-19 infection segmentation due to fewer model parameters. Robust segmentation of COVID-19 due to accurate feature computation power of DenseNet-77. A module is introduced to predict the infection growth of COVID-19 for a patient to analyze its severity over time. We present such a framework that can effectively classify the samples into several classes, that is, COVID-19, Pneumonia, and healthy samples. Rigorous experimentation was performed including the cross-dataset evaluation to prove the efficacy of the presented technique.


Subject(s)
COVID-19 , Pneumonia , COVID-19/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Pandemics , Tomography, X-Ray Computed/methods
14.
Frontiers in oncology ; 11, 2021.
Article in English | EuropePMC | ID: covidwho-1688264

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused a major outbreak around the world with severe impact on health, human lives, and economy globally. One of the crucial steps in fighting COVID-19 is the ability to detect infected patients at early stages and put them under special care. Detecting COVID-19 from radiography images using computational medical imaging method is one of the fastest ways to diagnose the patients. However, early detection with significant results is a major challenge, given the limited available medical imaging data and conflicting performance metrics. Therefore, this work aims to develop a novel deep learning-based computationally efficient medical imaging framework for effective modeling and early diagnosis of COVID-19 from chest x-ray and computed tomography images. The proposed work presents “WEENet” by exploiting efficient convolutional neural network to extract high-level features, followed by classification mechanisms for COVID-19 diagnosis in medical image data. The performance of our method is evaluated on three benchmark medical chest x-ray and computed tomography image datasets using eight evaluation metrics including a novel strategy of cross-corpse evaluation as well as robustness evaluation, and the results are surpassing state-of-the-art methods. The outcome of this work can assist the epidemiologists and healthcare authorities in analyzing the infected medical chest x-ray and computed tomography images, management of the COVID-19 pandemic, bridging the early diagnosis, and treatment gap for Internet of Medical Things environments.

15.
Front Public Health ; 9: 812735, 2021.
Article in English | MEDLINE | ID: covidwho-1662637

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has influenced the everyday life of people around the globe. In general and during lockdown phases, people worldwide use social media network to state their viewpoints and general feelings concerning the pandemic that has hampered their daily lives. Twitter is one of the most commonly used social media platforms, and it showed a massive increase in tweets related to coronavirus, including positive, negative, and neutral tweets, in a minimal period. The researchers move toward the sentiment analysis and analyze the various emotions of the public toward COVID-19 due to the diverse nature of tweets. Meanwhile, people have expressed their feelings regarding the vaccinations' safety and effectiveness on social networking sites such as Twitter. As an advanced step, in this paper, our proposed approach analyzes COVID-19 by focusing on Twitter users who share their opinions on this social media networking site. The proposed approach analyzes collected tweets' sentiments for sentiment classification using various feature sets and classifiers. The early detection of COVID-19 sentiments from collected tweets allow for a better understanding and handling of the pandemic. Tweets are categorized into positive, negative, and neutral sentiment classes. We evaluate the performance of machine learning (ML) and deep learning (DL) classifiers using evaluation metrics (i.e., accuracy, precision, recall, and F1-score). Experiments prove that the proposed approach provides better accuracy of 96.66, 95.22, 94.33, and 93.88% for COVISenti, COVIDSenti_A, COVIDSenti_B, and COVIDSenti_C, respectively, compared to all other methods used in this study as well as compared to the existing approaches and traditional ML and DL algorithms.


Subject(s)
COVID-19 , Deep Learning , Algorithms , Communicable Disease Control , Humans , Machine Learning , SARS-CoV-2 , Sentiment Analysis
16.
Int J Environ Res Public Health ; 19(1)2022 01 02.
Article in English | MEDLINE | ID: covidwho-1580766

ABSTRACT

The highly rapid spread of the current pandemic has quickly overwhelmed hospitals all over the world and motivated extensive research to address a wide range of emerging problems. The unforeseen influx of COVID-19 patients to hospitals has made it inevitable to deploy a rapid and accurate triage system, monitor progression, and predict patients at higher risk of deterioration in order to make informed decisions regarding hospital resource management. Disease detection in radiographic scans, severity estimation, and progression and prognosis prediction have been extensively studied with the help of end-to-end methods based on deep learning. The majority of recent works have utilized a single scan to determine severity or predict progression of the disease. In this paper, we present a method based on deep sequence learning to predict improvement or deterioration in successive chest X-ray scans and build a mathematical model to determine individual patient disease progression profile using successive scans. A deep convolutional neural network pretrained on a diverse lung disease dataset was used as a feature extractor to generate the sequences. We devised three strategies for sequence modeling in order to obtain both fine-grained and coarse-grained features and construct sequences of different lengths. We also devised a strategy to quantify positive or negative change in successive scans, which was then combined with age-related risk factors to construct disease progression profile for COVID-19 patients. The age-related risk factors allowed us to model rapid deterioration and slower recovery in older patients. Experiments conducted on two large datasets showed that the proposed method could accurately predict disease progression. With the best feature extractor, the proposed method was able to achieve AUC of 0.98 with the features obtained from radiographs. Furthermore, the proposed patient profiling method accurately estimated the health profile of patients.


Subject(s)
COVID-19 , Deep Learning , Aged , Disease Progression , Humans , Neural Networks, Computer , SARS-CoV-2
17.
Sustainability ; 14(1):254, 2022.
Article in English | MDPI | ID: covidwho-1580476

ABSTRACT

The entire world is suffering from the post-COVID-19 crisis, and governments are facing problems concerning the provision of satisfactory food and services to their citizens through food supply chain systems. During pandemics, it is difficult to handle the demands of consumers, to overcome food production problems due to lockdowns, work with minimum manpower, follow import and export trade policies, and avoid transportation disruptions. This study aims to analyze the behavior of food imports in Saudi Arabia and how this pandemic and its resulting precautionary measures have affected the food supply chain. We performed a statistical analysis and extracted descriptive measures prior to applying hybrid statistical hypothesis tests to study the behavior of the food chain. The paired samples t-test was used to study differences while the independent samples t-test was used to study differences in means at the level of each item and country, followed by the comparison of means test in order to determine the difference and whether it is increasing or decreasing. According to the results, Saudi Arabia experienced significant effects on the number of items shipped and the countries that supplied these items. The paired samples t-test showed a change in the behavior of importing activities by—47% for items and countries. The independent t-test revealed that 24 item groups and 86 countries reflected significant differences in the mean between the two periods. However, the impact on 41 other countries was almost negligible. In addition, the comparison of means test found that 68% of item groups were significantly reduced and 24% were increased, while only 4% of the items remained the same. From a country perspective, 65% of countries showed a noticeable decrease and 16% a significant increase, while 19% remained the same.

18.
Int J Environ Res Public Health ; 18(21)2021 10 21.
Article in English | MEDLINE | ID: covidwho-1480751

ABSTRACT

In the recent pandemic, accurate and rapid testing of patients remained a critical task in the diagnosis and control of COVID-19 disease spread in the healthcare industry. Because of the sudden increase in cases, most countries have faced scarcity and a low rate of testing. Chest X-rays have been shown in the literature to be a potential source of testing for COVID-19 patients, but manually checking X-ray reports is time-consuming and error-prone. Considering these limitations and the advancements in data science, we proposed a Vision Transformer-based deep learning pipeline for COVID-19 detection from chest X-ray-based imaging. Due to the lack of large data sets, we collected data from three open-source data sets of chest X-ray images and aggregated them to form a 30 K image data set, which is the largest publicly available collection of chest X-ray images in this domain to our knowledge. Our proposed transformer model effectively differentiates COVID-19 from normal chest X-rays with an accuracy of 98% along with an AUC score of 99% in the binary classification task. It distinguishes COVID-19, normal, and pneumonia patient's X-rays with an accuracy of 92% and AUC score of 98% in the Multi-class classification task. For evaluation on our data set, we fine-tuned some of the widely used models in literature, namely, EfficientNetB0, InceptionV3, Resnet50, MobileNetV3, Xception, and DenseNet-121, as baselines. Our proposed transformer model outperformed them in terms of all metrics. In addition, a Grad-CAM based visualization is created which makes our approach interpretable by radiologists and can be used to monitor the progression of the disease in the affected lungs, assisting healthcare.


Subject(s)
COVID-19 , Deep Learning , COVID-19 Testing , Delivery of Health Care , Humans , SARS-CoV-2
19.
Appl Soft Comput ; 113: 107878, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1401201

ABSTRACT

In recent times, COVID-19, has a great impact on the healthcare sector and results in a wide range of respiratory illnesses. It is a type of Ribonucleic acid (RNA) virus, which affects humans as well as animals. Though several artificial intelligence-based COVID-19 diagnosis models have been presented in the literature, most of the works have not focused on the hyperparameter tuning process. Therefore, this paper proposes an intelligent COVID-19 diagnosis model using a barnacle mating optimization (BMO) algorithm with a cascaded recurrent neural network (CRNN) model, named BMO-CRNN. The proposed BMO-CRNN model aims to detect and classify the existence of COVID-19 from Chest X-ray images. Initially, pre-processing is applied to enhance the quality of the image. Next, the CRNN model is used for feature extraction, followed by hyperparameter tuning of CRNN via the BMO algorithm to improve the classification performance. The BMO algorithm determines the optimal values of the CRNN hyperparameters namely learning rate, batch size, activation function, and epoch count. The application of CRNN and hyperparameter tuning using the BMO algorithm shows the novelty of this work. A comprehensive simulation analysis is carried out to ensure the better performance of the BMO-CRNN model, and the experimental outcome is investigated using several performance metrics. The simulation results portrayed that the BMO-CRNN model has showcased optimal performance with an average sensitivity of 97.01%, specificity of 98.15%, accuracy of 97.31%, and F-measure of 97.73% compared to state-of-the-art methods.

SELECTION OF CITATIONS
SEARCH DETAIL